
Appendix

A.1 Choice of Prior Distributions

We define the prior distributions of the α’s as (improper) uniform distributions, Normal(0,10000)

priors for the βj’s, and the prior distributions of the U as multiCAR. For the general case,

the multiCAR prior on U is defined in terms of county i’s multivariate p-dimensional vec-

tor of spatially correlated Normal random effects, Ui = (U1i, U2i, . . . , Upi)
′
, so that U =

(U1,U2, . . . ,Ui). In the present research we compare two racial groups, so p = 2; we define

the prior distribution on Ui as

Ui|U(−i) v N2(Ui,
Λ

mi

) , (1)

where Ui = (U1i, U2i)
′
has U qi =

∑
j∈κi

Uqj

mi
, with κi the set of “neighbors” of county i (typically

and here defined by adjacency) and with mi = |κi| the number of neighbors of county i, where

i /∈ κi by convention, and where U(−i) is the 2 by (I − 1) sub-matrix of U with the ith column

deleted. By specifying the prior distributions on the U as multiCAR, we allow for intra-county

correlation between rate estimates for the two racial groups in a given county. The relative

variability and covariance relationships between stroke death rates for the two racial groups

is described by Λ. For county i, Λ
mi

incorporates the number of neighbors of the county into

the conditional covariance matrix. To complete the model, we specify hyperparameters for

the prior distribution of the variance matrix. We assign a conjugate inverse Wishart prior

distribution to Λ. Although our model definition includes improper prior distributions for the

α’s and the U, the propriety of the resulting posterior distributions have been addressed by

Ghosh et al.1 and Sun et al.2
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A.2 Implementation

We implemented our fully Bayesian model using Markov chain Monte Carlo (MCMC) meth-

ods. Such iterative MCMC methods, detailed in Gilks et al.,3 allow generation of post-

convergence samples from the (approximate) posterior distribution of parameters of interest

and overcome potentially intractable integration in our models. From these samples, we cal-

culate and map standard properties, such as the median and 95 percent credible intervals and

other quantities of interest. We used WinBugs 1.4.1 to execute our model, created maps with

ArcView 3.3 (ESRI, Redlands, CA), and produced graphs and performed many calculations

with R-2.1.1 (R Foundation for Statistical Computing, Vienna, Austria).

In all implementations we ran three overdispersed, random, parallel chains of 15,000

MCMC simulations each, discarding the first 5,000 samples from each chain as a burn-in

period for a total of 30,000 simulations. Convergence was adequate on the basis of both

formal Gelman and Rubin diagnostics and informal visual inspection of the mixing of the

multiple chains.4 For all models, we estimated quantities of interest (such as racial disparity

and race-specific stroke death rates) as the median value from the MCMC iterations, which

represent approximate samples from the posterior distribution of the quantity conditional on

the data.
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